If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-16x-55=0
a = 8; b = -16; c = -55;
Δ = b2-4ac
Δ = -162-4·8·(-55)
Δ = 2016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2016}=\sqrt{144*14}=\sqrt{144}*\sqrt{14}=12\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-12\sqrt{14}}{2*8}=\frac{16-12\sqrt{14}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+12\sqrt{14}}{2*8}=\frac{16+12\sqrt{14}}{16} $
| 5(x-3)+2(x+1)=2(x-2) | | -5m=9−8m | | 4n-10=9 | | (3x+4)=(4x+5) | | 3(x-2)=2(x-4)7 | | 3(x-2)=(x-4)7 | | 3(x+6)-9=19 | | 8(2x-1)^2-38(2x-1)+9=0 | | 2(x+9)+3=13 | | x/12.6=120/360 | | 7x-6/9=4 | | 3x+-1=x+7 | | 8(7n)-5=3 | | 9m/4=8 | | 7x/5=11 | | 2(1-3x)=2x+5 | | m/3+8=12 | | 2g-10=16 | | 4m-5=31 | | 4x.2+3x-9=0 | | 10/3y-13/30=11/2y | | 51=k+3 | | 51=k3 | | 16x+5=15x+30 | | (2x-30)+x=18- | | 4p+3=2p+8 | | 4x+7x+6x+7x=360 | | 34x-11=5(6x-2)+4x-1 | | 14(6x-3)=99(22) | | -9=2x-2+5 | | 2x=1*0.5 | | x^2-4x/12-5/4=0 |